

UNIVERSITÀ **DI TRENTO**

Class-incremental Novel Class Discovery Mingxuan Liut Zhun Zhong Subhankar Royt Nicu Sebe Elisa Ricci tequal contribution University of Trento Fondazione Bruno Kessler

Problem

Class-incremental Novel Class Discovery (class-iNCD):

Discovering novel categories in an unlabelled data set by leveraging a pre-trained model that has been trained on a labelled data set containing disjoint yet related categories, while preserving the ability of the model to recognize previously seen categories, without access to the previously seen data and task-id of an input sample during inference.

Motivation

• To facilitate learning of novel classes, we dedicate a task specific classifier that is optimized with robust rank statistics:

$$\mathcal{L}_{\text{bce}} = -\mathbb{E}_{p(\mathbf{z}^{[\mathbf{U}]})} \tilde{y}_{ij}^{[\mathbf{U}]} \log(p_{ij}) + (1 - \tilde{y}_{ij}^{[\mathbf{U}]}) \log(1 - p_{ij})$$

• To overcome reliance on task-id, we propose to maintain a joint classifier for both the base and novel classes, which is trained with the pseudo-labels generated by the task specific one:

$$\begin{split} \mathcal{L}_{\text{self}} &= -\mathbb{E}_{(\mathbf{x}^{[\mathtt{U}]}, \hat{\mathbf{y}}^{[\mathtt{U}]})} \frac{1}{|C^{[\mathtt{A}]}|} \sum_{k=1}^{|C^{[\mathtt{A}]}|} \hat{y}_{k}^{[\mathtt{U}]} \log \sigma_{k}(h^{[\mathtt{A}]}(g(\mathbf{x}^{[\mathtt{U}]}))) \\ \hat{y}^{[\mathtt{U}]} &= C^{[\mathtt{L}]} + \operatorname*{arg\,max}_{k \in C^{[\mathtt{U}]}} h^{[\mathtt{U}]}(g(\mathbf{x}^{[\mathtt{U}]})). \end{split}$$

• We propose to store the base class feature prototypes from the previous task as exemplars. Features derived from the stored prototypes are then replayed to prevent forgetting old information on the base classes:

$$\mathcal{L}_{\text{replay}} = -\mathbb{E}_{c \sim C^{[L]}} \mathbb{E}_{(\mathbf{z}^{[L]}, \mathbf{y}_{c}^{[L]}) \sim \mathcal{N}(\boldsymbol{\mu}_{c}, \boldsymbol{v}_{c}^{2})} \sum_{k=1}^{|C^{[A]}|} y_{kc}^{[L]} \log \sigma_{k}(h^{[A]}(\mathbf{z}^{[L]}))$$

• To keep the feature replay useful, we add an regularization on the current feature extractor:

$$\mathcal{L}_{\mathrm{KD}}^{\mathrm{feat}} = -\mathbb{E}_{p(\mathbf{x}^{[\mathtt{U}]})} \left\| \left| g^{[\mathtt{L}]}(\mathbf{x}^{[\mathtt{U}]}) - g(\mathbf{x}^{[\mathtt{U}]}) \right| \right\|_{2}$$

Overall Framework

Mathada	CI	FAR-	10	CIFAR-100			
Methods	Old	New	All	Old	New	Al	
utoNovel[15]	27.5	3.5	15.5	2.6	15.2	5.1	
ResTune[29]	91.7	0.0	45.9	73.8	0.0	59.	
NCL[35]	92.0	1.1	46.5	73.6	10.1	60 .	
DTC[14]	64.0	0.0	32.0	55.9	0.0	44.	
FroST	77.5	49.5	63.4	64.6	45.8	59.	

TEL AVIV 2022

CENTER FOR **DIGITAL SOCIETY**

Two-step State-of-The-Arts

	Tiny-ImageNet										
	First Ste	p (180-10)		Second Step (180-10-10)							
d	New-1-J	New-1-N	All	Old	New-1-J	New-2-J	New-1-N	New-2-N	All		
7	0.0	38.0	37.6	34.9	0.0	0.0	25.4	42.8	31.4		
9	0.0	43.8	36.9	33.4	0.0	0.0	28.0	59.4	30.1		
6	0.0	34.2	5.3	1.4	0.0	2.6	21.6	41.6	1.4		
2	27.6	32.0	53.8	42.5	34.8	31.2	31.2	46.8	41.6		

,												
	CIFAR-10			CI	CIFAR-100 Tiny-ImageNet Avera			verag	ge			
	Old	New	All	Old	New	All	Old	New	All	Old	New	All
	77.4	49.5	63.5	62.5	45.8	59.2	54.4	33.9	52.4	64.8	43.1	58.3
	0.0	36.4	18.2	0.0	33.1	6.6	0.0	37.2	3.7	0.0	35.6	9.5
	0.0	39.4	19.7	0.0	33.1	6.6	0.0	34.3	3.4	0.0	35.6	9.9
	0.0	73.3	36.6	0.0	57.8	11.6	0.0	40.9	4.1	0.0	57.3	17.4
	91.7	0.0	45.8	69.2	0.0	55.4	57.5	0.0	51.7	72.8	0.0	51.0
L ST	16.6	0.0	8.3	2.7	0.0	2.1	2.0	0.0	1.8	7.1	0.0	4.1

run experiments on a sequence of tasks of unlabelled sets and verify its generality.