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Prediction Indicator

Correct Prediction

Partially Correct Prediction

Incorrect Prediction

Even more precise than 
ground-truth names

Ground-truth: Orchard Oriole
WordNet: Acridotheres Tristis
BLIP-2: Rufous Tanager
CaSED: Tanager
FineR (Ours): Orchard Oriole

Ground-truth: Dark-eyed Junco
WordNet: Slate-colored Junco
BLIP-2: Junco
CaSED: Junco
FineR (Ours): Dark-eyed Junco

Ground-truth: Jeep Grand Cherokee SUV 2012
WordNet: Cherokee
BLIP-2: Jeep Compass
CaSED: SUV
FineR (Ours): Jeep Grand Cherokee SUV 2012

Ground-truth: Bentley Continental GT Coupe 2012
WordNet: Platinum Black
BLIP-2: Bentley Continental GT
CaSED: Bentley
FineR (Ours): Bentley Continental GT Sedan 2010
Ground-truth: Blackberry Lily
WordNet: Peruvian Lily
BLIP-2: Lilium Senegalensis
CaSED: Gloriosa
FineR (Ours): Orange-spotted Lily

Ground-truth: Lotus
WordNet: Lotus
BLIP-2: Lotus
CaSED: Lotus
FineR (Ours): Pink Lotus
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Figure 6: Qualitative comparison on Bird-200, Car-196, and Flower-102 datasets. Digital zoom recommended.

do not emphasize or account for finer details necessary in FGVR. Similar trends are evident in the
example of “Jeep Grand Cherokee SUV 2012” (2nd row left). While all methods struggle with
the “Bentley Continental GT Couple 2012” (2nd row right), our system offers the closest and most
fine-grained prediction. The most striking observation comes from the Flower-102 dataset. Our
system outshines the ground-truth in the prediction results of the “Lotus” category (4th row left),
classifying it more precisely as a “Pink Lotus” aided by the attribute information “primary flower
color: pink” during reasoning. And in cases where all models misidentify the “Blackberry Lily”
(4th row right), our system offers the most plausible prediction, the “Orange-spotted Lily”, informed
by the flower’s distinctive orange spots in the petals. This further confirms that our system effectively
captures fine-grained visual details from images and leverages them for reasoning. This qualitative
analysis demonstrates that FineR not only generates precise, fine-grained predictions but also displays
high semantic awareness. This holds true even when predictions are only partially correct, thereby
mitigating the severity during misclassification. Refer to App. H for more qualitative results.

3.2 BENCHMARKING ON THE NOVEL POKEMON DATASET
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Charmeleon

Squirtle

Wartortle
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Pidgeotto

(a) Ten Pokemon categories and their names

Method GT
Hit Rate Discovered Names

WordNet 0/10 Falkner, Turtler, Shiny Lyonia, Chicken Hawk, Gerfalcon, Pika, Garrison,
Birdlime, Patrol, Tyto, Firedrake, Pokeweed, Archean Eon, Panduriform Leaf

BLIP-2 2/10 Sylveon, Squirtle, Pikachu

CaSED 2/10 Interbreeding, Pikachu, Turtle, Plant, Pokemon, Bulbasaur, Bird

FineR
(Ours) 7/10 Greenleaf Squirtle, Charmander, Charmeleon, Squirtle, Wartortle, Pikachu,

Raichu,Pidgeotto, Pichu, Sadtail Pikachu, Flower Squirtle

(b) Discovered names and ground-truth (GT) Hit Rate (c) Quantitative results
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Figure 6: Qualitative comparison on the five fine-grained datasets. Correct, partially correct and incorrect
predictions are colored Green, Red, and Orange, respectively. Blue highlights the prediction that is even more
precise than ground-truth category names.

4.2 BENCHMARKING ON THE NOVEL POKEMON DATASET

Pokemon-10
cACC sACC

Zero-shot (UB) 70.8 89.2

WordNet 34.6 33.1
BLIP-2 32.3 55.4
CaSED 39.2 55.7

FineR (Ours) 70.8 81.6

Table 3: Comparison with the upper-bound method, the constructed baselines, and the state-of-the-art method
CaSED Conti et al. (2023)) on the Pokemon dataset (10 categories, 3 images for discovery per category, 10
images for evaluation per category. Images are sourced from Google Images and annotated by hand). Best and
second-best performing methods are coloured Green and Red , respectively. Gray presents the upper bound.

Figure 7: Comparison on the novel Pokemon dataset (10 categories, 3 images per category for discovery, 10
images per category for evaluation. Images are sourced from Google Images and annotated by hand). Best and
second-best performances are coloured Green and Red , respectively. Gray presents the upper bound (UB).

Similar to most knowledge base-dependent methods Wang et al. (2015; 2017); Marino et al. (2019),
most of the compared baselines are confined by their reliance on explicit knowledge databases and
their inherent search capabilities. In contrast, our FineR system leverages its LLM core as the
reasoning engine for fine-grained semantic concept discovery. By utilizing the visual cues, it conducts
semantic reasoning based on the world knowledge encoded during the LLM’s training. To further
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Figure 7: Comparison on the novel Pokemon dataset (3 images per category for discovery, 10 for evaluation).

To further investigate the FGVR capability of FineR on more novel concepts, we introduce a new
Pokemon dataset comprised of 10 Pokemon characters, sourced from Pokedex (Nintendo, 2023)
and Google Image Search, as shown in Fig. 7(a). One can notice that each pair of Pokemons (each
column) have subtle visual differences. As shown in Fig. 7(b), it is hardly surprising that the WordNet
baseline fails to discover any of the Pokemon categories, scoring 0/10, given the absence of most
specific Pokemon names in its knowledge base. BLIP-2 and CaSED appear to mainly identify only
the most common Pokemon classes. Although CaSED does have all ten ground-truth Pokemon names
in its PMD knowledge base, it still fails to discover most of these categories. We conjecture this
failure to the high visual similarity between the Pokemons characters and their real-world analogs,
compounded by CLIP scoring preferences (Ge et al., 2023). As revealed in Fig. 7(b), the classes
identified by CaSED predominantly feature real-world categories resembling the Pokemons (e.g., the
animal “turtle” rather than the character “Squirtle”). In stark contrast, our FineR system successfully
discovers 7/10 ground-truth Pokemon categories, consequently outperforming the second-best result
by +31.6% in cACC and +25.9% in sACC as shown in Fig. 7(c).

3.3 ABLATION STUDY

We report an ablation analysis of the proposed components of FineR in Tab. 3. As shown in row
2 of Tab. 3, the Noisy Name Denoiser (NND) for the name refinement process (Sec. 2.2.2) stands
out as the most impactful, improving cACC by +6.0% and sACC by +4.7% over the baseline that
simply uses the preliminary candidate names Ĉ for classification. This validates its effectiveness in
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: Well. Could you describe this photo and its
wing color, head pattern, …, primary color ?

B: : I see a bird in a photo. How to distinguish its
specific species?

Reasoning Concepts from Observations Inference

…
Reasoning For Each Sample

: Certainly. The bird is perched on a tree
branch amidst the falling snow. Its wings are
grey, and it boasts a black and red pattern on
its head. Notably, its dominant color is red.

: Perfect. Even though I can’t see it, but based
on your description, I think the bird you see would
be a Pyrrhuloxia, Cardinal, or Summer Tanager.

Few Unlabeled Observations

…

VLM

Test Images

Semantic Classification with
Reasoned Concepts

Gadwall Cardinal
Red Eyed Vireo

Rusty Blackbird

Lincoln Sparrow

Tropical Kingbird
… …Large Language Model

Visual Question Answering Model

Vision-Langauge Model

Figure 1: An overview of our proposed fine-grained visual recognition (FGVR) pipeline. Left: Given few
unlabelled images we exploit visual question answering (VQA) and large language models (LLM) to reason
about subordinate-level category names without requiring expert knowledge. Right: At inference, we utilize the
reasoned concepts to carry out FGVR via zero-shot semantic classification with a vision-language model (VLM).

ABSTRACT

Identifying subordinate-level categories from images is a longstanding task in
computer vision and is referred to as fine-grained visual recognition (FGVR). It has
tremendous significance in real-world applications since an average layperson does
not excel at differentiating species of birds or mushrooms due to subtle differences
among the species. A major bottleneck in developing FGVR systems is caused
by the need of high-quality paired expert annotations. To circumvent the need of
expert knowledge we propose Fine-grained Semantic Category Reasoning (FineR)
that internally leverages the world knowledge of large language models (LLMs) as
a proxy in order to reason about fine-grained category names. In detail, to bridge
the modality gap between images and LLM, we extract part-level visual attributes
from images as text and feed that information to a LLM. Based on the visual
attributes and its internal world knowledge the LLM reasons about the subordinate-
level category names. Our training-free FineR outperforms several state-of-the-art
FGVR and language and vision assistant models and shows promise in working in
the wild and in new domains where gathering expert annotation is arduous.

1 INTRODUCTION

Fine-grained visual recognition (FGVR) is an important task in computer vision that deals with
identifying subordinate-level categories, such as species of plants or animals (Wei et al., 2021). It is
challenging due to the fact that different species of birds can differ in subtle attributes, such as the
Lincoln’s Sparrow mainly differs from Baird’s Sparrow in the coloration of the breast pattern (see
Fig. 2). Due to small inter-class and large inner-class variations, the FGVR methods typically require
auxiliary information namely part annotations (Zhang et al., 2014), attributes (Vedaldi et al., 2014),
natural language descriptions (He & Peng, 2017) collected with the help of experts in the respective
fields. Hence, this expensive expert annotation presents as a bottleneck and prevents FGVR in new
domains from being rolled out as software or services to be used by common users.

On the contrary encyclopedia of textual information about plants and animals can be found on the
internet that document at great lengths about the characteristics and appearance of each species. In

⇤Corresponding authors. Code is available at https://projfiner.github.io
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Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

Zero-shot (UB) 57.4 80.5 63.1 66.3 56.9 75.5 69.7 77.8 81.7 87.8 65.8 77.6
CLIP-Sinkhorn 23.5 - 18.1 - 12.6 - 30.9 - 23.1 - 21.6 -
DINO-Sinkhorn 13.5 - 7.4 - 11.2 - 17.9 - 5.2 - 19.1 -
KMeans 36.6 - 30.6 - 16.4 - 66.9 - 32.8 - 36.7 -
WordNet 39.3 57.7 18.3 33.3 53.9 70.6 42.1 49.8 55.4 61.9 41.8 54.7
BLIP-2 30.9 56.8 43.1 57.9 39.0 58.6 61.9 59.1 61.3 60.5 47.2 58.6
CLEVER † 7.9 - - - - - 6.2 - - - - -
SCD † 46.5 - - - 57.9 - - - - - - -
CaSED 25.6 50.1 26.9 41.4 38.0 55.9 67.2 52.3 60.9 63.6 43.7 52.6

FineR (Ours) 51.1 69.5 49.2 63.5 48.1 64.9 63.8 51.3 72.9 72.4 57.0 64.3
Table 1: cACC(%) and sACC (%) comparison on the five fine-grained datasets. |Dtrain

c | = 3. Results reported
are averaged over 10 runs. †: SCD and CLEVER results are quoted from original paper (SCD uses the entire
dataset for class name discovery and assumes the number of classes known as a-priori). Best and second-best
performances are coloured Green and Red , respectively. Gray presents the upper bound (UB).
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Figure 4: Comparison with the learning-based
methods. cACC is averaged on five datasets.

30

40

50

60

70

10 20 30 40 50 60 70
40

50

60

70

80

90

40 50 60 70 80 90

sA
C
C
(%
)

cACC (%) cACC (%)(a) Car-196 (b) Pet-37

BLIP-2

Layperson

Expert

CaSED

WordNet

FineR (Ours)

sA
C
C
(%
)

BLIP-2

WordNet

CaSED

Layperson

Expert

FineR (Ours)

Bette
r

Bette
r

Figure 5: Human study results. Averages computed across 30
participants are reported.

Among the compared methods, BLIP-2 stands out, largely owing to its powerful vision-
aligned Flan-T5xxl language core and its large training knowledge base (Li et al., 2023).

Average cACC sACC
Zero-shot (UB) 65.8 77.6
WordNet 41.8 54.7
BLIP-2 44.6 59.0
CaSED 40.8 51.1

FineR (Ours) 51.9 61.2
Table 2: Comparison with imbal-
anced Dtrain across five fine-grained
datasets. Averages reported.

The WordNet baseline, SCD, and CaSED show strong perfor-
mance on specialized datasets such as Dog-120 and Flower-102,
largely due to their exhaustive knowledge bases. Specifically,
WordNet and SCD cover all ground-truth Dog-120 categories,
while CaSED’s PMD (Singh et al., 2022) knowledge base includes
101 of 102 ground-truth Flower-102 categories. In contrast, our
reasoning-based FineR system achieves significant improvements
across various datasets without explicitly needing to query any
external knowledge base. Moreover, with just a few unlabeled im-
ages, our method surpasses learning-based approaches that utilize
the full-scale training split, as illustrated in Fig. 4.

Quantitative comparison II: From layperson to expert - where do we stand? Echoing with our
initial motivation of democratizing FGVR, we conducted a human study to establish layperson-level
baselines on the Car-196 and Pet-37 datasets. In short, we presented one image per category to 30
non-expert participants and asked them to identify the specific car model or pet breed. If unsure,
the participants were asked to describe the objects. The collected answers were then used to build
a zero-shot classifier with CLIP, and forms the Layperson baseline. For the Expert baseline we
have used the UB baseline, which uses the ground-truth class names, as described before. As shown
in Fig. 5, on the Car-196 dataset, the Layperson baseline outperforms all machine-based methods,
except our FineR system. On the Pet-37 dataset, our method distinguishes itself as the top performer
among machine-based approaches. This human study shows that FineR successfully narrows the gap
between laypersons and experts in FGVR. Further details in App. J.

Qualitative comparison. We visualize and analyze the predictions of different methods in Fig. 6. On
the Bird-200 dataset (1st row), our FineR system shines in recognizing specific bird species, notably
the “Dark-eyed Junco”. Our FineR system successfully captures the nuance of the “dark-eyed” visual
feature, setting it apart from visually similar birds like the more generic “Junco”. In contrast, the
compared methods tend to predict coarse-grained and common categories, like “Junco”, as they
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K FURTHER DISCUSSIONS

K.1 REASONING CAPABILITY OF LARGE LANGUAGE MODELS

In a world awash with data, Large Language Models (LLMs) such as ChatGPT (OpenAI, 2022)
and LLaMA (Touvron et al., 2023) have emerged as prodigious intellects of reasoning and problem
solving capabilities (Brown et al., 2020; Wei et al., 2022; Kojima et al., 2022; Yao et al., 2023).
They power transformative advances in tasks as diverse as common sense reasoning (Bian et al.,
2023), visual question answering (Shao et al., 2023; Zhu et al., 2023a; Berrios et al., 2023), robotic
manipulation (Huang et al., 2023), and even arithmetic or symbolic reasoning (Wei et al., 2022).
What if we could elevate these language-savvy powerhouses beyond the limitations of text and bestow
upon them the ’gift of sight,’ specifically for Fine-grained Visual Recognition (FGVR)? In this work,
we propose FineR system that translates useful visual cues for recognizing fine-grained objects from
images into a language these LLMs can understand, and thereby unleashing the reasoning prowess of
LLMs onto FGVR task.

K.2 THE STORY OF BLACKBERRY LILY

GT: Blackberry Lily

WordNet

Pred: Peruvian Lily

BLIP-2

Pred: Lilium Senegalensis

CaSED

Pred: Gloriosa

FineR (Ours)

Pred:  Orange-spotted Lily
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Figure 23: Reverse comparison of prediction results for the "Blackberry Lily" image (upper-left corner) in
Flower-102. We evaluate the visual counterparts associated with the predicted semantic concepts. To conduct
this comparison, we employ two distinct methods for inversely identifying their visual counterparts: (i) Google
Image Search: we query and fetch images that are paired with the predicted class names from Google; (ii) Stable
Diffusion: we utilize the predicted semantic class names as text prompts to generate semantically-conditioned
images using Stable Diffusion. Partially correct and wrong predictions are color coded. None of the methods
correctly predict the ground-truth label.
Predicted category names encapsulate valuable semantic information that should align with or align
closely the ground truth. The predicted semantics will be used in downstream tasks. Therefore,
a semantically robust prediction is important, even when it is a wrong prediction. For instance, a
prediction of "Peruvian Lily" against the ground truth "Blackberry Lily" is more tolerable
than incorrectly predicting "Rose". As discussed in Sec. 3.1 , our FineR system showcases its
capability for semantic awareness, particularly when all the methods wrongly predict a "Blackberry
Lily", it offers the most plausible prediction of "Orange-spotted Lily". Nevertheless, a sole
focus on textual semantics might not fully assess the quality of a prediction, which is important for
downstream applications like text-to-image generation. We address this by additionally employing
a unique methodology of reverse visual comparison using the prediction results of "Blackberry
Lily", as illustrated in Fig. 23. Specifically, we employ two techniques to locate visual analogs for
the predicted classes: Google Image Search and Stable Diffusion (Rombach et al., 2022) text-to-image
generation. The upper row in Fig. 23 shows images retrieved via Google Image Search using the
predicted classes, while the lower row displays images generated by Stable Diffusion, conditioned on
the predictions as text prompt.

This reverse comparison reveals that the visual counterparts retrieved through FineR are strikingly
similar to the ground-truth, corroborating its robustness. In contrast, reversed prediction results
from WordNet and BLIP-2 exhibit only partial similarities in petal patterns, aligning with their semi-
accurate class names. The mispredictions from CaSED, however, lack such visual congruence. This
simple yet insightful reverse comparison distinctly highlights the advantages of our reasoning-based
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Reverse Comparison

Solution: Fine-grained Semantic Category Reasoning System with LLMs
i. Translating Visual Information to Textual Modality: convert useful visual 

information into textual descriptions.
ii. Eliciting LLM Reasoning for Concept Discovery: employ a LLM to reason 

fine-grained concepts based on visual cues in natural language.
iii. Automatic Identification: use a contrastive VLM to automatically 

recognizes the reasoned fine-grained concepts in incoming data.

• Question: Supervised/Zero-shot 
FGVR demands ground truth class 
names known only to experts, 
such as ornithologists. Can we 
instead ask foundational VLMs to 
recognize these fine-grained 
categories directly?

• Preliminary Results: they may not 
directly address this challenge
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Quantivative Results
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Ground-truth: Yellow-bellied Flycatcher
BLIP-2 Yellow-rumpled Warbler
LLaVA Bird
LENS Eastern Wood Pewee
MiniGPT-4 Small Bird
FineR (Ours): Willow Flycatcher

Ground-truth: Volkswagen Golf Hatchback 2012
BLIP-2 Volkswagen Golf
LLaVA Car
LENS Volkswagen Golf MK2
MiniGPT-4 Volkswagen Golf MK3
FineR (Ours): Volkswagen Golf 2-Door Hatchback

Ground-truth: Brabancon Griffon
BLIP-2 Pekingese
LLaVA Dog
LENS Chihuahua
MiniGPT-4 Small Dog
FineR (Ours): Brussels Griffon

Ground-truth: Water Lily
BLIP-2 Water Lily
LLaVA Water Lily
LENS Lotus
MiniGPT-4 Water Lily
FineR (Ours): Yellow Water Lily

Ground-truth: Japanese Chin
BLIP-2 Shih Tzu
LLaVA Dog
LENS Tan and White Dog
MiniGPT-4 Dog
FineR (Ours): Shih Tzu

Ground-truth: Pidgey
BLIP-2 Sylveon
LLaVA Cartoon Bird
LENS Le Contes Sparrow
MiniGPT-4 Cartoon Bird
FineR (Ours): Pidgeotto

Ground-truth: Horned Grebe
BLIP-2 Grebe
LLaVA Bird
LENS Clarks Grebe
MiniGPT-4 Common Loon
FineR (Ours): Black-necked Grebe

Ground-truth: Dodge Dakota Crew Cab 2010
BLIP-2 Dodge Dakota
LLaVA Pickup Truck
LENS Silver Truck
MiniGPT-4 Pickup Truck
FineR (Ours): Dodge Dakota Crew Cab 2012

Ground-truth: Irish Terrier
BLIP-2 Terrier
LLaVA Dog
LENS Brown Dog
MiniGPT-4 Puppy
FineR (Ours): Airedale Terrier

Ground-truth: Pink-yellow Dahlia
BLIP-2 Calendula
LLaVA Flower
LENS Dahlia
MiniGPT-4 Dahl Flower
FineR (Ours): Yellow-Orange Dahlia

Ground-truth: Wheaten Terrier
BLIP-2 Terrier
LLaVA Shaggy Dog
LENS Dog
MiniGPT-4 Shaggy Dog
FineR (Ours): Small-sized Terrier

Ground-truth: Squirtle
BLIP-2 Squirtle
LLaVA Turtle
LENS Turtle
MiniGPT-4 Turtle

FineR (Ours): Wartortle
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Further Failure Case Analysis FineR:

Task Formulation: Vocabulary-free Fine-grained Visual Recognition:
i. Automatically discovering semantic concepts from few unlabelled 

observations
ii. Subsequently identifying the incoming data using discovered concepts

LLMs can act as proxies for human experts, though they lack "eyes”. VLMs 
provide a medium through which to elicit knowledge and reasoning from LLMs.
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Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

Zero-shot (UB) 57.4 80.5 63.1 66.3 56.9 75.5 69.7 77.8 81.7 87.8 65.8 77.6
CLIP-Sinkhorn 23.5 - 18.1 - 12.6 - 30.9 - 23.1 - 21.6 -
DINO-Sinkhorn 13.5 - 7.4 - 11.2 - 17.9 - 5.2 - 19.1 -
KMeans 36.6 - 30.6 - 16.4 - 66.9 - 32.8 - 36.7 -
WordNet 39.3 57.7 18.3 33.3 53.9 70.6 42.1 49.8 55.4 61.9 41.8 54.7
BLIP-2 30.9 56.8 43.1 57.9 39.0 58.6 61.9 59.1 61.3 60.5 47.2 58.6
CLEVER † 7.9 - - - - - 6.2 - - - - -
SCD † 46.5 - - - 57.9 - - - - - - -
CaSED 25.6 50.1 26.9 41.4 38.0 55.9 67.2 52.3 60.9 63.6 43.7 52.6

FineR (Ours) 51.1 69.5 49.2 63.5 48.1 64.9 63.8 51.3 72.9 72.4 57.0 64.3
Table 1: cACC(%) and sACC (%) comparison on the five fine-grained datasets. |Dtrain

c | = 3. Results reported
are averaged over 10 runs. †: SCD and CLEVER results are quoted from original paper (SCD uses the entire
dataset for class name discovery and assumes the number of classes known as a-priori). Best and second-best
performances are coloured Green and Red , respectively. Gray presents the upper bound (UB).
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Figure 4: Comparison with the learning-based
methods. cACC is averaged on five datasets.
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Figure 5: Human study results. Averages computed across 30
participants are reported.

Among the compared methods, BLIP-2 stands out, largely owing to its powerful vision-
aligned Flan-T5xxl language core and its large training knowledge base (Li et al., 2023).

Average cACC sACC
Zero-shot (UB) 65.8 77.6
WordNet 41.8 54.7
BLIP-2 44.6 59.0
CaSED 40.8 51.1

FineR (Ours) 51.9 61.2
Table 2: Comparison with imbal-
anced Dtrain across five fine-grained
datasets. Averages reported.

The WordNet baseline, SCD, and CaSED show strong perfor-
mance on specialized datasets such as Dog-120 and Flower-102,
largely due to their exhaustive knowledge bases. Specifically,
WordNet and SCD cover all ground-truth Dog-120 categories,
while CaSED’s PMD (Singh et al., 2022) knowledge base includes
101 of 102 ground-truth Flower-102 categories. In contrast, our
reasoning-based FineR system achieves significant improvements
across various datasets without explicitly needing to query any
external knowledge base. Moreover, with just a few unlabeled im-
ages, our method surpasses learning-based approaches that utilize
the full-scale training split, as illustrated in Fig. 4.

Quantitative comparison II: From layperson to expert - where do we stand? Echoing with our
initial motivation of democratizing FGVR, we conducted a human study to establish layperson-level
baselines on the Car-196 and Pet-37 datasets. In short, we presented one image per category to 30
non-expert participants and asked them to identify the specific car model or pet breed. If unsure,
the participants were asked to describe the objects. The collected answers were then used to build
a zero-shot classifier with CLIP, and forms the Layperson baseline. For the Expert baseline we
have used the UB baseline, which uses the ground-truth class names, as described before. As shown
in Fig. 5, on the Car-196 dataset, the Layperson baseline outperforms all machine-based methods,
except our FineR system. On the Pet-37 dataset, our method distinguishes itself as the top performer
among machine-based approaches. This human study shows that FineR successfully narrows the gap
between laypersons and experts in FGVR. Further details in App. J.

Qualitative comparison. We visualize and analyze the predictions of different methods in Fig. 6. On
the Bird-200 dataset (1st row), our FineR system shines in recognizing specific bird species, notably
the “Dark-eyed Junco”. Our FineR system successfully captures the nuance of the “dark-eyed” visual
feature, setting it apart from visually similar birds like the more generic “Junco”. In contrast, the
compared methods tend to predict coarse-grained and common categories, like “Junco”, as they
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Prediction Indicator

Correct Prediction

Partially Correct Prediction

Incorrect Prediction

Even more precise than 
ground-truth names

Ground-truth: Orchard Oriole
WordNet: Acridotheres Tristis
BLIP-2: Rufous Tanager
CaSED: Tanager
FineR (Ours): Orchard Oriole

Ground-truth: Dark-eyed Junco
WordNet: Slate-colored Junco
BLIP-2: Junco
CaSED: Junco
FineR (Ours): Dark-eyed Junco

Ground-truth: Jeep Grand Cherokee SUV 2012
WordNet: Cherokee
BLIP-2: Jeep Compass
CaSED: SUV
FineR (Ours): Jeep Grand Cherokee SUV 2012

Ground-truth: Bentley Continental GT Coupe 2012
WordNet: Platinum Black
BLIP-2: Bentley Continental GT
CaSED: Bentley
FineR (Ours): Bentley Continental GT Sedan 2010
Ground-truth: Blackberry Lily
WordNet: Peruvian Lily
BLIP-2: Lilium Senegalensis
CaSED: Gloriosa
FineR (Ours): Orange-spotted Lily

Ground-truth: Lotus
WordNet: Lotus
BLIP-2: Lotus
CaSED: Lotus
FineR (Ours): Pink Lotus
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Figure 6: Qualitative comparison on Bird-200, Car-196, and Flower-102 datasets. Digital zoom recommended.

do not emphasize or account for finer details necessary in FGVR. Similar trends are evident in the
example of “Jeep Grand Cherokee SUV 2012” (2nd row left). While all methods struggle with
the “Bentley Continental GT Couple 2012” (2nd row right), our system offers the closest and most
fine-grained prediction. The most striking observation comes from the Flower-102 dataset. Our
system outshines the ground-truth in the prediction results of the “Lotus” category (4th row left),
classifying it more precisely as a “Pink Lotus” aided by the attribute information “primary flower
color: pink” during reasoning. And in cases where all models misidentify the “Blackberry Lily”
(4th row right), our system offers the most plausible prediction, the “Orange-spotted Lily”, informed
by the flower’s distinctive orange spots in the petals. This further confirms that our system effectively
captures fine-grained visual details from images and leverages them for reasoning. This qualitative
analysis demonstrates that FineR not only generates precise, fine-grained predictions but also displays
high semantic awareness. This holds true even when predictions are only partially correct, thereby
mitigating the severity during misclassification. Refer to App. H for more qualitative results.

3.2 BENCHMARKING ON THE NOVEL POKEMON DATASET
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(a) Ten Pokemon categories and their names

Method GT
Hit Rate Discovered Names

WordNet 0/10 Falkner, Turtler, Shiny Lyonia, Chicken Hawk, Gerfalcon, Pika, Garrison,
Birdlime, Patrol, Tyto, Firedrake, Pokeweed, Archean Eon, Panduriform Leaf

BLIP-2 2/10 Sylveon, Squirtle, Pikachu

CaSED 2/10 Interbreeding, Pikachu, Turtle, Plant, Pokemon, Bulbasaur, Bird

FineR
(Ours) 7/10 Greenleaf Squirtle, Charmander, Charmeleon, Squirtle, Wartortle, Pikachu,

Raichu,Pidgeotto, Pichu, Sadtail Pikachu, Flower Squirtle

(b) Discovered names and ground-truth (GT) Hit Rate (c) Quantitative results
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Figure 6: Qualitative comparison on the five fine-grained datasets. Correct, partially correct and incorrect
predictions are colored Green, Red, and Orange, respectively. Blue highlights the prediction that is even more
precise than ground-truth category names.

4.2 BENCHMARKING ON THE NOVEL POKEMON DATASET

Pokemon-10
cACC sACC

Zero-shot (UB) 70.8 89.2

WordNet 34.6 33.1
BLIP-2 32.3 55.4
CaSED 39.2 55.7

FineR (Ours) 70.8 81.6

Table 3: Comparison with the upper-bound method, the constructed baselines, and the state-of-the-art method
CaSED Conti et al. (2023)) on the Pokemon dataset (10 categories, 3 images for discovery per category, 10
images for evaluation per category. Images are sourced from Google Images and annotated by hand). Best and
second-best performing methods are coloured Green and Red , respectively. Gray presents the upper bound.

Figure 7: Comparison on the novel Pokemon dataset (10 categories, 3 images per category for discovery, 10
images per category for evaluation. Images are sourced from Google Images and annotated by hand). Best and
second-best performances are coloured Green and Red , respectively. Gray presents the upper bound (UB).

Similar to most knowledge base-dependent methods Wang et al. (2015; 2017); Marino et al. (2019),
most of the compared baselines are confined by their reliance on explicit knowledge databases and
their inherent search capabilities. In contrast, our FineR system leverages its LLM core as the
reasoning engine for fine-grained semantic concept discovery. By utilizing the visual cues, it conducts
semantic reasoning based on the world knowledge encoded during the LLM’s training. To further
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Figure 7: Comparison on the novel Pokemon dataset (3 images per category for discovery, 10 for evaluation).

To further investigate the FGVR capability of FineR on more novel concepts, we introduce a new
Pokemon dataset comprised of 10 Pokemon characters, sourced from Pokedex (Nintendo, 2023)
and Google Image Search, as shown in Fig. 7(a). One can notice that each pair of Pokemons (each
column) have subtle visual differences. As shown in Fig. 7(b), it is hardly surprising that the WordNet
baseline fails to discover any of the Pokemon categories, scoring 0/10, given the absence of most
specific Pokemon names in its knowledge base. BLIP-2 and CaSED appear to mainly identify only
the most common Pokemon classes. Although CaSED does have all ten ground-truth Pokemon names
in its PMD knowledge base, it still fails to discover most of these categories. We conjecture this
failure to the high visual similarity between the Pokemons characters and their real-world analogs,
compounded by CLIP scoring preferences (Ge et al., 2023). As revealed in Fig. 7(b), the classes
identified by CaSED predominantly feature real-world categories resembling the Pokemons (e.g., the
animal “turtle” rather than the character “Squirtle”). In stark contrast, our FineR system successfully
discovers 7/10 ground-truth Pokemon categories, consequently outperforming the second-best result
by +31.6% in cACC and +25.9% in sACC as shown in Fig. 7(c).

3.3 ABLATION STUDY

We report an ablation analysis of the proposed components of FineR in Tab. 3. As shown in row
2 of Tab. 3, the Noisy Name Denoiser (NND) for the name refinement process (Sec. 2.2.2) stands
out as the most impactful, improving cACC by +6.0% and sACC by +4.7% over the baseline that
simply uses the preliminary candidate names Ĉ for classification. This validates its effectiveness in
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